Keywords, statements, definitions

25.02.

- 1. Burnside's transfer theorem: Let G be a finite group and $P \in Syl_p(G)$ with $P \leq Z(N_G(P))$. Then there exists a normal subgroup of G such that $N \cap P = \{1\}$ and NP = G.
- 2. In this case N is called a normal p-complement in G.
- 3. Steps of the proof of the theorem:
 - Transfer is a homomorphism
 - Transfer dos not depend on the choice of the transversal
 - Efficient way to calculate transfer
 - If the Sylow *p*-subgroups of *G* are abelian and if two elements *a* and *b* contained in the same Sylow *p*-subgroup *P* are conjugate in *G*, then *a* and *b* are conjugate in $N_G(P)$.
 - $\tau(x) = x^{|G:P|}$ if $P \le Z(N_G(P))$.

Definition 0.1. • $[a, b] := a^{-1}b^{-1}ab$

- $G' \coloneqq \langle [a, b] \mid a, b \in G \rangle$
- 4. G' is a characteristic subgroup of G.
- 5. If N is a normal subgroup in G such that G/N is abelian, then $G' \leq N$.